

General Certificate of Education Advanced Subsidiary Examination June 2012

Mathematics

Unit Further Pure 1

Friday 18 May 20129.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1
The quadratic equation

$$
5 x^{2}-7 x+1=0
$$

has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Show that $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{39}{5}$.
(c) Find a quadratic equation, with integer coefficients, which has roots

$$
\begin{equation*}
\alpha+\frac{1}{\alpha} \quad \text { and } \quad \beta+\frac{1}{\beta} \tag{5marks}
\end{equation*}
$$

2 A curve has equation $y=x^{4}+x$.
(a) Find the gradient of the line passing through the point $(-2,14)$ and the point on the curve for which $x=-2+h$. Give your answer in the form

$$
p+q h+r h^{2}+h^{3}
$$

where p, q and r are integers.
(b) Show how the answer to part (a) can be used to find the gradient of the curve at the point $(-2,14)$. State the value of this gradient.

3 It is given that $z=x+\mathrm{i} y$, where x and y are real numbers.
(a) Find, in terms of x and y, the real and imaginary parts of

$$
\begin{equation*}
\mathrm{i}(z+7)+3\left(z^{*}-\mathrm{i}\right) \tag{3marks}
\end{equation*}
$$

(b) Hence find the complex number z such that

$$
\mathrm{i}(z+7)+3\left(z^{*}-\mathrm{i}\right)=0
$$

4
Find the general solution, in degrees, of the equation

$$
\begin{equation*}
\sin \left(70^{\circ}-\frac{2}{3} x\right)=\cos 20^{\circ} \tag{6marks}
\end{equation*}
$$

$5 \quad$ The curve C has equation $y=\frac{x}{(x+1)(x-2)}$.
The line L has equation $y=-\frac{1}{2}$.
(a) Write down the equations of the asymptotes of C.
(b) The line L intersects the curve C at two points. Find the x-coordinates of these two points.
(c) Sketch C and L on the same axes.
(You are given that the curve C has no stationary points.)
(d) Solve the inequality

$$
\frac{x}{(x+1)(x-2)} \leqslant-\frac{1}{2}
$$

6 (a) Using surd forms, find the matrix of a rotation about the origin through 135° anticlockwise.
(b) The matrix \mathbf{M} is defined by $\mathbf{M}=\left[\begin{array}{rr}-1 & -1 \\ 1 & -1\end{array}\right]$.
(i) Given that \mathbf{M} represents an enlargement followed by a rotation, find the scale factor of the enlargement and the angle of the rotation.
(ii) The matrix \mathbf{M}^{2} also represents an enlargement followed by a rotation. State the scale factor of the enlargement and the angle of the rotation.
(2 marks)
(iii) Show that $\mathbf{M}^{4}=k \mathbf{I}$, where k is an integer and \mathbf{I} is the 2×2 identity matrix.
(2 marks)
(iv) Deduce that $\mathbf{M}^{2012}=-2^{n} \mathbf{I}$ for some positive integer n.

The equation

$$
24 x^{3}+36 x^{2}+18 x-5=0
$$

has one real root, α.
(a) Show that α lies in the interval $0.1<x<0.2$.
(b) Starting from the interval $0.1<x<0.2$, use interval bisection twice to obtain an interval of width 0.025 within which α must lie.
(c) Taking $x_{1}=0.2$ as a first approximation to α, use the Newton-Raphson method to find a second approximation, x_{2}, to α. Give your answer to four decimal places.

8
The diagram shows the ellipse E with equation

$$
\frac{x^{2}}{5}+\frac{y^{2}}{4}=1
$$

and the straight line L with equation

$$
y=x+4
$$

(a) Write down the coordinates of the points where the ellipse E intersects the coordinate axes.
(2 marks)
(b) The ellipse E is translated by the vector $\left[\begin{array}{l}p \\ 0\end{array}\right]$, where p is a constant. Write down the equation of the translated ellipse.
(c) Show that, if the translated ellipse intersects the line L, the x-coordinates of the points of intersection must satisfy the equation

$$
\begin{equation*}
9 x^{2}-(8 p-40) x+\left(4 p^{2}+60\right)=0 \tag{3marks}
\end{equation*}
$$

(d) Given that the line L is a tangent to the translated ellipse, find the coordinates of the two possible points of contact.
(No credit will be given for solutions based on differentiation.)

